Feature Detection

-Harshit Sikchi



Topics:

Harris Corner Detector
Mar-Hildreth Edge detector
SIFT(David Lowe)




What are Interest Points:-

They are spatial locations, or points in the image that define what is interesting

or what stand out in the image.



How do we want our detector to be:-

e Well Localized Points
e No false interest point
e Robust with respect to noise



Usage

Object Tracking

Stereo Calibration
Panorama , Image Stitching
3D Object Reconstruction
Robot Navigation



Figure 4.2 Two pairs of images to be matched. What kinds of feature might one use to
establish a set of correspondences between these images?



Structure from motion

https://www.youtube.com/watch?v=i7ierVkXYa8



https://www.youtube.com/watch?v=i7ierVkXYa8
https://www.youtube.com/watch?v=i7ierVkXYa8

Reliable Descriptor

e Must be invariant to geometric and photometric differences in the two views.
e Geometric means Translation, Rotation, Affine Transform, Scaling.



Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.




Approach

e Find some reliable interest points, Keypoints or Corners.
e Create a descriptor which describes those Keypoints.
e |ocalize them in other image.



Harris Detector

Cited by 13663
Probably the only paper of Harris
http://www.bmva.org/bmvc/1988/avc-88-023.pdf

A COMBINED CORNER AND EDGE DETECTOR

Chris Harris & Mike Stephens

Plessey Rescarch Roke Manor, United Kingdom
© The Plessey Company plc. 1988

Consistency of image edge filiering is of prime imporiance
Jfor 3D interpretation of image sequences using feature
iracking aigorithms. To cater for image regions containing
texture and isolated features, a combined corner andrdgz
detector based on the local auto-correlation function is
wtilised, and it is shown to perform with good consistency
on natural imagery.

INTRODUCTION

The problem we are addressing in Alvey Project MMI149
is that of using computer vision 10 understand the
unconstrained 3D world, in which the viewed scenes will
in general contain too wide a diversity of objects for top-
down recognition techniques to work. For example, we
desire 10 obtain an understanding of natural scenes,
‘containing roads, buildings, trees, bushes, eic., as typified
by the two frames from a sequence illustrated in Figure 1.
‘The solution o this problem that we are pursuing is to
use a computer vision system based upon motion analysis
of a monocular image sequence from a mabile camera. By
extraction and tracking of image features, representations
of the 3D analogues of these features can be constructed.

To enable explicit tracking of image features to be
performed, the image features must be discrete, and not
form a continuum like texture, or edge pixels (edgels). For
this reason, our earlier work! has concentrated on the
extraction and tracking of feature-points or corners, since

they are discrete, reliable and meaningful?. However, the
lack of connectivity of feature-points is a major limitation
in our obtaining higher level descriptions, such as surfaces
and objects. We need the richer information that is
available from edges3.

THE EDGE TRACKING PROBLEM

Matching between edge images on a pixel-by-pixel basis
works for stereo, because of the known epi-polar camera
geometry. However for the motion problem, where the
camera motion is unknown, the aperture problem prevents
us from undertaking explicit edgel maiching, This could be
overcome by solving for the motion beforehand, but we
are still faced with the mkoflxmhnguch individual edge
pixel and estimating its 3D location from, for example,
Kalman Filtering. This approach is unattractive in
comparison with assembling the edgels into edgl:
segments, and tracking these segments as the features.

Now, the unconstrained imagery we shall be considering
will contain both curved edges and texture of various
scales. Representing edges as a set of straight line
fragments?, and using these as our discrete features will be
inappropriate, since curved lines and texture edges can be
expected to fragment differently on each image of the
sequence, and so be untrackable. Because of ill-
conditioning, the use of parametrised curves (eg. circular
arcs) cannot be expected to provide the solution, especially
with real imagery.

Fioure 1. Pair of imases from an outdnor seauence



http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Mathematics of Harris Detector



A look into
mathematics

(b) (©) (d)




Mathematics(Continued)

Classification of Ay
Image points using
eigenvalues of M:




Invariant Local Features

Image content is transformed into local feature coordinates that are
invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors



Overview of Keypoint Matching




Overview of Keypoint Matching

1. Find a set of
distinctive key-
points




Compute corner response




Response>Threshold




Final Result




» Change of intensity for the shift (u,v)

E(u,v)= Z w(x y) [I(x+u y+v) I(x y)]
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Visualization of second moment matrices
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Marr-Hildreth Edge Detector




Steps:

e Smooth image by a gaussian filter ->S
e Apply Laplacianto S
e Find Zero Crossing



Characterizing edges

* An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative
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Slide Credit: James Hays



Why smoothing?
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Marr Hildreth Edge Detector

e Gaussian smoothing

smoothed image  Gaussian filter image | =¥
] - ik g = e ot
S - g I | 2n0

e Find Laplacian

secondorder  secondorder

derivativeinx  derivative in y + V is used for gradient (first derivative)
(72 62 + A% is used for Laplacian (Secondt derivative
AS= 3 + A L
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Gaussian Mask
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LOG

e Deriving the Laplacian of Gaussian (LoG)




SIFT(Scale Invariant Feature Transform)




Facts:-

e 40,106 Citations !

e Patented by University of British Columbia. (Well,If ideas start getting patented,
Scientists would be the richest community)

e Transform image into scale invariant coordinates.



Robustness to

Affine distortion(rotation , shear, scale) distortion
Change in 3D viewpoint

Addition of Noise

Change in lllumination



Steps

e Scale-space Peak selection
o Potential Key point locations

e Key Point Localization
o  Accurately locating feature key points
e COrientation Assignment
o  Assigning orientation to those key points

e Key Point Descriptor
o Describing the key point as a high dimensional vector<128>.



Scale Space
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Zerocrossings at multiple scale
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Multiple smooth versions of a signal




Scale Space(Atkins):-
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Laplacian-of-Gaussian (LoG)

* Interest points:
Local maxima in scale
space of Laplacian-of-
Gaussian o
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Automatic Scale Intultion:

Selection * Find scale that gives local maxima of some function
fin both position and scale.

K. Grauman.



How to do this?

f(Iil...im(x:O')) = f(ljlujm(x',a'))




Slg nature * Function responses for increasing scale (scale signature)
Function
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» Laplacian-of-Gaussian = “blob” detector

3

K. Grauman, B. Leibe






sigma = 2



sigma = 2.5018



sigma = 3.1296



sigma = 3.9148






Building the scale space:-
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Finding out interest point:-

s Compare a pixel (X) with 26
pixels in current and adjacent

scales (Green Circles) A %7

e 4




Thank you




